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• Unidirectional Semivariograms – Fitting with only one model

Represent spatial variability of the attribute in one specific direction

Predictions with Anisotropy and SimulationsPredictions with Anisotropy and Simulations

• Introduction 

Experimental Semivariogram
(from samples)
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Theorical (Modeled) Semivariogram   
(fitted from the experimental semivariogram 

using only one model)

( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⋅+=

⎟
⎠
⎞

⎜
⎝
⎛⋅+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

a
10

10

eCC

a
CC

h

hh

1        

Expγ

33



Master of Science in Geoespatial Technologies

• Unidirectional Semivariograms – Fitting with Nested Models 

Predictions with Anisotropy and SimulationsPredictions with Anisotropy and Simulations

• Introduction 
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• Isotropy x Anysotropy

• Isotropic Spatial Variation - Omnidirectional Semivariogram

• Defined by:

• Any Angular Direction (0 degrees for example)

• Angular Tolerance equal 90 degrees for up and down directions (
completing 360 degrees. Why?)

Semivariogram for 4 different directions and semivariogram surfaces
55
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perpendicular directions

Smaller Continuity

Greater Continuity
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• Isotropy x Anisotropy

• Anisotropic Spatial Variation – 2 Directional Semivariograms

• Defined by:

• Angular Directions of the greatest and the smallest spatial continuity

• Angular Tolerance much lesser than 90 degrees for up and down 
directions ( 30 degrees for example can be the first try)

Semivariogram for 2 perpendicular directions and semivariogram surfaces
66
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• Angles measured clockwised from 0 degree at the North
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Anisotropy parameters

Anisotropy factor (Fa)     Fa = a2 / a1

Anisotropy angle (Aa)
Angle of the greater continuity (300 in this example)

• Anisotropic Spatial Variation – Example Elevation in a valley
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• Anisotropic Spatial Variation – Anisotropy Types 

• Geometric Anisotropy

• 2 semivariograms with same model function, same sills and different ranges
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• Anisotropic Spatial Variation – Anisotropy Types 

• Zonal Anisotropy

• 2 semivariograms with same model function, same ranges and different sills

less frequently found for natural phenomena
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• Anisotropic Spatial Variation – Anisotropy Types 

• Combined (Geometric + Zonal) Anisotropy

• 2 semivariograms with same model function, different sills and ranges

• it can also have different nugget effects, but is not common
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Where: 

C01 is the nugget effect of the variogram 1 and C11 is the contribution of the variogram 1

C02 is the nugget effect of the variogram 2 and C12 is the contribution of the variogram 2

h1 is the module of the vector h in the direccion of variogram 1 ( 300 for example)

h2 is the module of the vector h in the direccion of variogram 2 (1200 for example)
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• Modeling Anisotropic Semivariogram – defining a resulting semivariogram 
from the two perpendicular unidirectional variograms
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• Modeling Anisotropic Semivariogram – Example in the laboratory
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• Modeling Anisotropic Semivariogram – Example in the laboratory
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1414

• Kriging prediction 

Summary
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• Kriging prediction – isotropic x anisotropic modeling

(a) (b)

Anisotropy 
angles 170

and 1070

Examples of evaluation of the means values by kriging considering 
(a) isotropic and (b) anisotropic spatial variations 1515
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687.3

909.9

2.97

23.0
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• Kriging prediction – estimate means and variance of the estimates

Maps of kriging means and kriging variances
1616
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• Simulations – allows to get realizations from a stochastic model representing a 
Random Variable or a Random Field.

• Gaussian Simulation - Using the hypotheses that the mean and the variance 
(or standard deviation) evaluated by kriging are parameters of gaussian 
distributions one get (at each location for example) the following distribution 
equation (and graph):
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z

• N realizations of each RV Z are 
obtaining repeating n times the 
steps:
1. Generating a random number 

between 0 and 1 (cp - cumulative 
probability value)

2. Mapping the cp to the z value 
using the Gaussian cdf defined by 
the given µz and σz parameters.

• Problem: How can I prove (or 
verify) the hypothesis that the 
distribution in each estimated 
location follows a Gaussian 
(Normal) distribution?

cpk

zk

Predictions with Anisotropy and SimulationsPredictions with Anisotropy and Simulations

• Simulations – the process of getting realizations of the Gaussian distribution
Uses the cumulative distribution function (cdf) and a random number generator.

1818
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• Problems with geostochastic procedures

The main drawback of using geostatistic approaches is the need of work on 
variogram generations and fittings. This work is interactive and require from 
the user knowledge of the main concepts related to basics of the geostatistics 
in order to obtain reliable variograms.

The kriging approach is an estimator based on weighted mean evaluations 
and is uses the hypothesis of minimizing the error variance. Because of these 
the kriging estimates create smooth models that can filter some details of the 
original surfaces.
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• Advantages on using geostochastic procedures

• Spatial continuity is modeled by the variogram

• Range define automatically the region of influence and number of neighbors

• Cluster problems are avoided

• It can work with isotropic and anisotropic phenomena

• Allows prediction of the Kriging variance

• Allows simulating ( get realizations from)  random variables with 
normal distributions.
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Summary and ConclusionsSummary and Conclusions

Summary and Conclusions

• Geostatistic estimators can be used to model spatial data.

• Geostatistics estimators make use of variograms that model the 
variation (or continuity) of the attribute in space. 

• Geostatistics advantages are more highlighted when the sample set is 
not dense 

• Current GISs allow users work with these tools mainly in Spatial 
Analysis Modules.

2121
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Exercises

• Run the Lab4 that is available in the geostatistics course area of ISEGI 
online.

• Find out if the variation of your attribute is isotropic or anisotropic. Model 
the anisotropy if it exists. 
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Predictions with Deterministic ProceduresPredictions with Deterministic Procedures

END 

of Presentation
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